Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Clin Chim Acta ; : 119685, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663472

ABSTRACT

Early detection and effective cancer treatment are critical to improving metastatic cancer cell diagnosis and management today. In particular, accurate qualitative diagnosis of metastatic cancer cell represents an important step in the diagnosis of cancer. Today, biosensors have been widely developed due to the daily need to measure different chemical and biological species. Biosensors are utilized to quantify chemical and biological phenomena by generating signals that are directly proportional to the quantity of the analyte present in the reaction. Biosensors are widely used in disease control, drug delivery, infection detection, detection of pathogenic microorganisms, and markers that indicate a specific disease in the body. These devices have been especially popular in the field of metastatic cancer cell diagnosis and treatment due to their portability, high sensitivity, high specificity, ease of use and short response time. This article examines biosensors for metastatic cancer cells. It also studies metastatic cancer cells and the mechanism of metastasis. Finally, the function of biosensors and biomarkers in metastatic cancer cells is investigated.

2.
Talanta ; 275: 126097, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631266

ABSTRACT

The rapid developments in the field of zeolitic imidazolate frameworks (ZIFs) in recent years have created unparalleled opportunities for the development of unique bioactive ZIFs for a range of biosensor applications. Integrating bioactive molecules such as DNA, aptamers, and antibodies into ZIFs to create bioactive ZIF composites has attracted great interest. Bioactive ZIF composites have been developed that combine the multiple functions of bioactive molecules with the superior chemical and physical properties of ZIFs. This review thoroughly summarizes the ZIFs as well as the novel strategies for incorporating bioactive molecules into ZIFs. They are used in many different applications, especially in biosensors. Finally, biosensor applications of bioactive ZIFs were investigated in optical (fluorescence and colorimetric) and electrochemical (amperometric, conductometric, and impedance) fields. The surface of ZIFs makes it easier to immobilize bioactive molecules like DNA, enzymes, or antibodies, which in turn enables the construction of cutting-edge, futuristic biosensors.

3.
Heliyon ; 10(7): e28902, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38633652

ABSTRACT

Rhodanine is a heterocyclic organic compound that has been investigated for its potential biomedical applications, particularly in drug discovery. Rhodanine derivatives have been examined as the medication options for numerous illnesses, including cancer, inflammation, and infectious diseases. Some rhodanine derivatives have also shown promising activity against drug-resistant strains of bacteria and viruses. One of these derivatives is polyrhodanine (PR), a conducting polymer that has gained attention for its biomedical properties. This review article summarises the latest advancements in creating biomaterials based on PR for biosensing, antimicrobial treatments, and anticancer therapies. The distinctive characteristics of PR, such as biocompatibility, biodegradability, and good conductivity, render it an attractive candidate for these applications. The article also explores obstacles and potential future paths for advancing biomaterials made with PR, including synthesis modifications, characterisation techniques, and in vivo evaluation of biocompatibility and efficacy. Overall, as an emerging research topic, this review emphasises the potential of PR as a promising biomaterial for various biomedical applications and provides insights into the contemporary state of research and prospective directions for investigation.

4.
Article in English | MEDLINE | ID: mdl-38523523

ABSTRACT

The importance of early diagnosis of hepatitis B virus infection to treat and follow up this disease has led to many advances in diagnostic techniques and materials. Conventional diagnostic tests are not very useful, especially in the early stages of infection; it is therefore suggested that nanomaterials can enhance them by changing and strengthening their performance for a more accurate and rapid diagnosis. Electrochemical immunosensors with unique features such as miniaturization, low cost, specificity, and simplicity have become a convenient and vital tool in the rapid diagnosis of hepatitis B. Different strategies have been presented, such as graphene oxide and gold nanorods [GO-GNRs], graphene oxide [GO], copper metal-organic framework/ electrochemically reduced graphene oxide [Cu-MOF/ErGO] composite, label-free graphene oxide/Fe3O4/Prussian Blue [GO/Fe3O4/PB] immunosensor, and graphene oxide-ferrocene-CS/Au [ GO-Fc-CS/Au] nanoparticle layered electrochemical immunosensor. In this review, we discuss a group of the most widely used nanostructures, such as graphene and carbon nanotubes, which are used to develop electrochemical immunosensors for the early diagnosis of the hepatitis B virus.

5.
Drug Res (Stuttg) ; 74(3): 133-144, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350632

ABSTRACT

In this study, the protective efficacy of pentoxifylline (PTX) as a xanthine derivative against arsenic trioxide (ATO)-induced kidney and liver damage in mice was investigated. Thirty-six mice were divided into six groups, receiving intraperitoneal injections of saline, ATO, PTX, or a combination for four weeks. Blood samples were analyzed for serum biochemistry, while hepatic tissue underwent examination for histopathological changes and assessment of oxidative stress markers and antioxidant gene expression through Real-Time PCR. ATO exposure significantly increased serum markers (creatinine, ALT, BUN, ALP, AST) and induced histopathological changes in the liver. Moreover, it elevated renal and hepatic nitric oxide (NO) and lipid peroxidation (LPO) levels, and reduced antioxidant enzyme expression (CAT, GSR, GPx, MPO, SOD), total thiol groups (TTGs), and total antioxidant capacity (TAC). Conversely, PTX treatment effectively lowered serum hepatic and renal markers, improved antioxidant markers, and induced histopathological alterations. Notably, PTX did not significantly affect renal and hepatic NO levels. These findings suggest that PTX offers therapeutic potential in mitigating liver and acute kidney injuries induced by various insults, including exposure to ATO.


Subject(s)
Alkaloids , Antioxidants , Mice , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Arsenic Trioxide/metabolism , Arsenic Trioxide/pharmacology , Liver/metabolism , Oxidative Stress , Alkaloids/pharmacology , Xanthines/metabolism , Xanthines/pharmacology
6.
Chem Rec ; : e202300303, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38314935

ABSTRACT

Nanotechnology has emerged as a pivotal tool in biomedical research, particularly in developing advanced sensing platforms for disease diagnosis and therapeutic monitoring. Since gold nanoparticles are biocompatible and have special optical characteristics, they are excellent choices for surface-enhanced Raman scattering (SERS) sensing devices. Integrating fluorescence characteristics further enhances their utility in real-time imaging and tracking within biological systems. The synergistic combination of SERS and fluorescence enables sensitive and selective detection of biomolecules at trace levels, providing a versatile platform for early cancer diagnosis and drug monitoring. In cancer detection, AuNPs facilitate the specific targeting of cancer biomarkers, allowing for early-stage diagnosis and personalized treatment strategies. The enhanced sensitivity of SERS, coupled with the tunable fluorescence properties of AuNPs, offers a powerful tool for the identification of cancer cells and their microenvironment. This dual-mode detection not only improves diagnostic accuracy but also enables the monitoring of treatment response and disease progression. In drug detection, integrating AuNPs with SERS provides a robust platform for identifying and quantifying pharmaceutical compounds. The unique spectral fingerprints obtained through SERS enable the discrimination of drug molecules even in complex biological matrices. Furthermore, the fluorescence property of AuNPs makes it easier to track medication distribution in real-time, maximizing therapeutic effectiveness and reducing adverse effects. Furthermore, the review explores the role of gold fluorescence nanoparticles in photodynamic therapy (PDT). By using the complementary effects of targeted drug release and light-induced cytotoxicity, SERS-guided drug delivery and photodynamic therapy (PDT) can increase the effectiveness of treatment against cancer cells. In conclusion, the utilization of gold fluorescence nanoparticles in conjunction with SERS holds tremendous potential for revolutionizing cancer detection, drug analysis, and photodynamic therapy. The dual-mode capabilities of these nanomaterials provide a multifaceted approach to address the challenges in early diagnosis, treatment monitoring, and personalized medicine, thereby advancing the landscape of biomedical applications.

7.
Chemosphere ; 353: 141525, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395369

ABSTRACT

Air pollution causes extreme toxicological repercussions for human health and ecology. The management of airborne bacteria and viruses has become an essential goal of air quality control. Existing pathogens in the air, including bacteria, archaea, viruses, and fungi, can have severe effects on human health. The photocatalysis process is one of the favorable approaches for eliminating them. The oxidative nature of semiconductor-based photocatalysts can be used to fight viral activation as a green, sustainable, and promising approach with significant promise for environmental clean-up. The photocatalysts show wonderful performance under moderate conditions while generating negligible by-products. Airborne viruses can be inactivated by various photocatalytic processes, such as chemical oxidation, toxicity due to the metal ions released from photocatalysts composed of metals, and morphological damage to viruses. This review paper provides a thorough and evaluative analysis of current information on using photocatalytic oxidation to deactivate viruses.


Subject(s)
Air Pollution , Coronavirus Infections , Coronavirus , Humans , Air Pollution/prevention & control , Coronavirus Infections/prevention & control , Oxidation-Reduction , Metals
8.
Chem Biol Drug Des ; 103(1): e14430, 2024 01.
Article in English | MEDLINE | ID: mdl-38230777

ABSTRACT

N-acetylcysteine (NAC) is a recommended drug for treating acetaminophen (APAP) intoxication. Due to NAC's low bioavailability, this study aimed to use polyrhodanine (PR) nanoparticles (NPs) as a drug carrier to improve the effectiveness of NAC. After preparation and characterization of NAC loaded on PR, 30 rats were randomly divided into five groups of six. The first group (control) received normal saline. Groups 2-5 were treated with normal saline, PR, NAC, and NAC loaded on PR, respectively. The treatments were started 4 h after oral administration of APAP (2000 mg kg-1 ). After 48 h, the animals were anesthetized, and liver function indices and oxidative stress were measured in tissue and serum samples. The APAP administration can increase aminotransferases and alkaline phosphatase enzymes in serum, decreasing the total antioxidant capacity and thiol groups and increasing lipid peroxidation in liver tissue. Administration of PR-NAC could effectively improve the level of serum-hepatic enzymes, total antioxidant capacity and thiol groups, lipid peroxidation, and pathological changes in liver tissue in animals poisoned with APAP. PR-NAC has a significant therapeutic effect on preventing acute hepatotoxicity caused by APAP, and its effectiveness can be associated with an improvement in the oxidant/antioxidant balance of liver tissue.


Subject(s)
Chemical and Drug Induced Liver Injury , Nanoparticles , Rats , Animals , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Acetaminophen/toxicity , Antioxidants/pharmacology , Antioxidants/therapeutic use , Saline Solution/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Liver , Sulfhydryl Compounds
9.
Chem Rec ; 24(1): e202200266, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36995072

ABSTRACT

The ever-growing demand of human society for clean and reliable energy sources spurred a substantial academic interest in exploring the potential of biological resources for developing energy generation and storage systems. As a result, alternative energy sources are needed in populous developing countries to compensate for energy deficits in an environmentally sustainable manner. This review aims to evaluate and summarize the recent progress in bio-based polymer composites (PCs) for energy generation and storage. The articulated review provides an overview of energy storage systems, e. g., supercapacitors and batteries, and discusses the future possibilities of various solar cells (SCs), using both past research progress and possible future developments as a basis for discussion. These studies examine systematic and sequential advances in different generations of SCs. Developing novel PCs that are efficient, stable, and cost-effective is of utmost importance. In addition, the current state of high-performance equipment for each of the technologies is evaluated in detail. We also discuss the prospects, future trends, and opportunities regarding using bioresources for energy generation and storage, as well as the development of low-cost and efficient PCs for SCs.

10.
Sci Rep ; 13(1): 17326, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833299

ABSTRACT

Ganoderma lucidum methanolic extract (GLME) has attracted tremendous attention due to its exceptional antimicrobial and anticancer properties that can be delicately tuned by controlling the initial extraction's content and concentration. Herein, we detailed the characterization, antimicrobial, and cytotoxic performance of GLME as a potential multi-functional therapeutic agent. Accordingly, FTIR, XRD, FESEM, EDX, and HPLC analyses were employed to assess the samples, followed by disc diffusion and microdilution broth methods to test its antibacterial effects against four Gram-positive and Gram-negative bacterial strains, viz., Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. MTT assay was applied to determine the cytotoxic activity of GLME against PDL and Hek-293 normal cell lines and MCF-7 and K-562 cancer cell lines. The IC50 values of 598 µg mL-1 and 291 µg mL-1 were obtained for MCF-7 and K-562 cancer cell lines, which confirmed the stronger anticancer activity of the GLME against blood cancer cells than breast cancer cells. This is while the IC50 of normal Hek-293 cells is 751 µg mL-1, and the lowest toxicity was observed for normal PDL cells with more than 57% survival at a concentration of 3000 µg mL-1. The results showed that the antibacterial property of this product against E.coli bacteria was higher than streptomycin, so the zone of inhibition was observed as 44 ± 0.09 mm and 30 ± 0.11 mm, respectively. These data provide valuable insights into the therapeutic usage of GLME for treating breast and blood cancers. This work is motivated by research studies looking for pharmacological products to address chronic and acute diseases, where further resources and studies are required to explore such products' adverse effects and toxicity.


Subject(s)
Antineoplastic Agents , Reishi , Humans , Methanol , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Bacteria , Plant Extracts/pharmacology , Antineoplastic Agents/pharmacology , Microbial Sensitivity Tests
11.
Anim Reprod Sci ; 257: 107326, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37677889

ABSTRACT

Plant-based semen extenders, typically derived from soybean lecithin, are easier to modulate more and consistent in their composition than animal-based extenders. As large lecithin particles can, however, reduce effectiveness and solubility in bull semen extenders, sonication was used to create nano-lecithin (NL) particles of soybean lecithin. The objective was to determine the effects of lecithin type and concentration on the quality of frozen-thawed bovine sperm. We hypothesized that reducing the size of lecithin improves its interactions with the sperm and enhances the parameters that favor its motility, viability and fertility. Semen was collected from six mature Holstein bulls and ejaculates meeting minimum standards were pooled. Eight Tris-based extenders that contained 1, 2, 3, or 4 % of either conventional lecithin (L1-L4) or NL (NL1-NL4), plus two control extenders (one animal-based extender containing 20 % egg yolk [EY] and a commercial lecithin-based extender [BioXcell®]) were compared. Among soybean lecithin-based extenders, NL3 had the highest total and progressive sperm motility, and average path, straight-line and curvilinear sperm velocity, and was comparable to EY. Additionally, sperm mitochondrial activity was the highest in NL3, whereas sperm viability was highest in EY, NL3, and L4. Following in vitro fertilization of in vitro-matured bovine oocyes, NL3 had cleavage and hatching rates comparable to BioXcell®, but a lower blastocyst rate than EY. Overall, NL3 performed better than the other extenders for most end points, with efficiency comparable to EY. We, therefore, concluded that reducing lecithin particle size to a nano level improves sperm cryopreservation with optimal performance with 3 % NL.


Subject(s)
Lecithins , Semen Preservation , Male , Animals , Cattle , Lecithins/pharmacology , Sperm Motility , Semen Preservation/veterinary , Cryoprotective Agents/pharmacology , Seeds , Spermatozoa , Cryopreservation/veterinary , Egg Yolk
12.
Biosensors (Basel) ; 13(8)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37622872

ABSTRACT

The COVID-19 pandemic has spurred demand for efficient and rapid diagnostic tools that can be deployed at point of care to quickly identify infected individuals. Existing detection methods are time consuming and they lack sensitivity. Point-of-care testing (POCT) has emerged as a promising alternative due to its user-friendliness, rapidity, and high specificity and sensitivity. Such tests can be conveniently conducted at the patient's bedside. Immunodiagnostic methods that offer the rapid identification of positive cases are urgently required. Quantum dots (QDs), known for their multimodal properties, have shown potential in terms of combating or inhibiting the COVID-19 virus. When coupled with specific antibodies, QDs enable the highly sensitive detection of viral antigens in patient samples. Conventional lateral flow immunoassays (LFAs) have been widely used for diagnostic testing due to their simplicity, low cost, and portability. However, they often lack the sensitivity required to accurately detect low viral loads. Quantum dot (QD)-based lateral flow immunoassays have emerged as a promising alternative, offering significant advancements in sensitivity and specificity. Moreover, the lateral flow immunoassay (LFIA) method, which fulfils POCT standards, has gained popularity in diagnosing COVID-19. This review focuses on recent advancements in QD-based LFIA for rapid POCT COVID-19 diagnosis. Strategies to enhance sensitivity using QDs are explored, and the underlying principles of LFIA are elucidated. The benefits of using the QD-based LFIA as a POCT method are highlighted, and its published performance in COVID-19 diagnostics is examined. Overall, the integration of quantum dots with LFIA holds immense promise in terms of revolutionizing COVID-19 detection, treatment, and prevention, offering a convenient and effective approach to combat the pandemic.


Subject(s)
COVID-19 , Quantum Dots , Humans , Point-of-Care Systems , COVID-19/diagnosis , COVID-19 Testing , Pandemics , Immunoassay
13.
Materials (Basel) ; 16(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37444999

ABSTRACT

Metal-organic frameworks (MOFs) have proven to be very effective carriers for drug delivery in various biological applications. In recent years, the development of hybrid nanostructures has made significant progress, including developing an innovative MOF-loaded nanocomposite with a highly porous structure and low toxicity that can be used to fabricate core-shell nanocomposites by combining complementary materials. This review study discusses using MOF materials in cancer treatment, imaging, and antibacterial effects, focusing on oral cancer cells. For patients with oral cancer, we offer a regular program for accurately designing and producing various anticancer and antibacterial agents to achieve maximum effectiveness and the lowest side effects. Also, we want to ensure that the anticancer agent works optimally and has as few side effects as possible before it is tested in vitro and in vivo. It is also essential that new anticancer drugs for cancer treatment are tested for efficacy and safety before they go into further research.

14.
Micromachines (Basel) ; 14(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37374770

ABSTRACT

There are several treatment protocols for acute viral hepatitis, and it is critical to recognize acute hepatitis in its earliest stages. Public health measures to control these infections also rely on rapid and accurate diagnosis. The diagnosis of viral hepatitis remains expensive, and there is no adequate public health infrastructure, while the virus is not well-controlled. New methods for screening and detecting viral hepatitis through nanotechnology are being developed. Nanotechnology significantly reduces the cost of screening. In this review, the potential of three-dimensional-nanostructured carbon substances as promising materials due to fewer side effects, and the contribution of these particles to effective tissue transfer in the treatment and diagnosis of hepatitis due to the importance of rapid diagnosis for successful treatment, were extensively investigated. In recent years, three-dimensional carbon nanomaterials such as graphene oxide and nanotubes with special chemical, electrical, and optical properties have been used for the diagnosis and treatment of hepatitis due to their high potential. We expect that the future position of nanoparticles in the rapid diagnosis and treatment of viral hepatitis can be better determined.

15.
Materials (Basel) ; 16(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37176408

ABSTRACT

Environmental pollution has become a worldwide issue. Rapid industrial and agricultural practices have increased organic contaminants in water supplies. Hence, many strategies have been developed to address this concern. In order to supply clean water for various applications, high-performance treatment technology is required to effectively remove organic and inorganic contaminants. Utilizing photocatalytic membrane reactors (PMRs) has shown promise as a viable alternative process in the water and wastewater industry due to its efficiency, low cost, simplicity, and low environmental impact. PMRs are commonly categorized into two main categories: those with the photocatalyst suspended in solution and those with the photocatalyst immobilized in/on a membrane. Herein, the working and fouling mechanisms in PMRs membranes are investigated; the interplay of fouling and photocatalytic activity and the development of fouling prevention strategies are elucidated; and the significance of photocatalysis in membrane fouling mechanisms such as pore plugging and cake layering is thoroughly explored.

16.
Molecules ; 27(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36500636

ABSTRACT

The undesirable side effects of conventional chemotherapy are one of the major problems associated with cancer treatment. Recently, with the development of novel nanomaterials, tumor-targeted therapies have been invented in order to achieve more specific cancer treatment with reduced unfavorable side effects of chemotherapic agents on human cells. However, the clinical application of nanomedicines has some shortages, such as the reduced ability to cross biological barriers and undesirable side effects in normal cells. In this order, bioinspired materials are developed to minimize the related side effects due to their excellent biocompatibility and higher accumulation therapies. As bioinspired and biomimetic materials are mainly composed of a nanometric functional agent and a biologic component, they can possess both the physicochemical properties of nanomaterials and the advantages of biologic agents, such as prolonged circulation time, enhanced biocompatibility, immune modulation, and specific targeting for cancerous cells. Among the nanomaterials, asymmetric nanomaterials have gained attention as they provide a larger surface area with more active functional sites compared to symmetric nanomaterials. Additionally, the asymmetric nanomaterials are able to function as two or more distinct components due to their asymmetric structure. The mentioned properties result in unique physiochemical properties of asymmetric nanomaterials, which makes them desirable materials for anti-cancer drug delivery systems or cancer bio-imaging systems. In this review, we discuss the use of bioinspired and biomimetic materials in the treatment of cancer, with a special focus on asymmetric nanoparticle anti-cancer agents.


Subject(s)
Antineoplastic Agents , Biomimetic Materials , Nanoparticles , Nanostructures , Neoplasms , Humans , Biomimetic Materials/therapeutic use , Biomimetic Materials/chemistry , Nanomedicine/methods , Drug Delivery Systems , Neoplasms/drug therapy , Nanoparticles/chemistry , Nanostructures/chemistry , Antineoplastic Agents/therapeutic use
17.
Nanomaterials (Basel) ; 12(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364683

ABSTRACT

The exponential increase in global energy demand in daily life prompts us to search for a bioresource for energy production and storage. Therefore, in developing countries with large populations, there is a need for alternative energy resources to compensate for the energy deficit in an environmentally friendly way and to be independent in their energy demands. The objective of this review article is to compile and evaluate the progress in the development of quantum dots (QDs) for energy generation and storage. Therefore, this article discusses the energy scenario by presenting the basic concepts and advances of various solar cells, providing an overview of energy storage systems (supercapacitors and batteries), and highlighting the research progress to date and future opportunities. This exploratory study will examine the systematic and sequential advances in all three generations of solar cells, namely perovskite solar cells, dye-sensitized solar cells, Si cells, and thin-film solar cells. The discussion will focus on the development of novel QDs that are economical, efficient, and stable. In addition, the current status of high-performance devices for each technology will be discussed in detail. Finally, the prospects, opportunities for improvement, and future trends in the development of cost-effective and efficient QDs for solar cells and storage from biological resources will be highlighted.

18.
J Mater Chem B ; 10(46): 9654-9661, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36382376

ABSTRACT

Rapid and accurate detection of cancer and neurological diseases is a major issue that has received great attention recently to enable early therapy treatment. In this report, we utilize an atmospheric pressure microplasma system to convert a natural bioresource chitosan into nitrogen-doped graphene quantum dots (NGQDs) for photoluminescence (PL) based selective detection of cancer and neurotransmitter biomarkers. By adjusting the pH conditions during the detection, multiple biomolecules including uric acid (UA), folic acid (FA), epinephrine (EP), and dopamine (DA) can be simultaneously detected with high selectivity and sensitivity using a single material only. Linear relationships between the biomarker concentration and the PL intensity ratio are obtained starting from 0.8 to 100 µM with low limits of detection (LoDs) of 123.1, 157.9, 80.5, and 91.3 nM for UA, EP, FA, and DA, respectively. Our work provides an insight into the multiple biomarker detection using a single material only, which is beneficial for the early detection and diagnosis of cancer and neurological diseases, as well as the development of new drugs.


Subject(s)
Graphite , Neoplasms , Quantum Dots , Humans , Graphite/chemistry , Quantum Dots/chemistry , Nitrogen/chemistry , Dopamine/chemistry , Uric Acid , Neurotransmitter Agents , Biomarkers
19.
Biosensors (Basel) ; 12(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36140128

ABSTRACT

In today's world, the use of biosensors occupies a special place in a variety of fields such as agriculture and industry. New biosensor technologies can identify biological compounds accurately and quickly. One of these technologies is the phenomenon of surface plasmon resonance (SPR) in the development of biosensors based on their optical properties, which allow for very sensitive and specific measurements of biomolecules without time delay. Therefore, various nanomaterials have been introduced for the development of SPR biosensors to achieve a high degree of selectivity and sensitivity. The diagnosis of deadly diseases such as cancer depends on the use of nanotechnology. Smart MXene quantum dots (SMQDs), a new class of nanomaterials that are developing at a rapid pace, are perfect for the development of SPR biosensors due to their many advantageous properties. Moreover, SMQDs are two-dimensional (2D) inorganic segments with a limited number of atomic layers that exhibit excellent properties such as high conductivity, plasmonic, and optical properties. Therefore, SMQDs, with their unique properties, are promising contenders for biomedicine, including cancer diagnosis/treatment, biological sensing/imaging, antigen detection, etc. In this review, SPR biosensors based on SMQDs applied in biomedical applications are discussed. To achieve this goal, an introduction to SPR, SPR biosensors, and SMQDs (including their structure, surface functional groups, synthesis, and properties) is given first; then, the fabrication of hybrid nanoparticles (NPs) based on SMQDs and the biomedical applications of SMQDs are discussed. In the next step, SPR biosensors based on SMQDs and advanced 2D SMQDs-based nanobiosensors as ultrasensitive detection tools are presented. This review proposes the use of SMQDs for the improvement of SPR biosensors with high selectivity and sensitivity for biomedical applications.


Subject(s)
Biosensing Techniques , Nanostructures , Quantum Dots , Biosensing Techniques/methods , Nanostructures/chemistry , Nanotechnology , Surface Plasmon Resonance/methods
20.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36145358

ABSTRACT

The increasing rate of oral squamous cell carcinoma (OSCC) and the undesirable side effects of anticancer agents have enhanced the demand for the development of efficient, detectable, and targeted anticancer systems. Saponins are a diverse family of natural glycosides that have recently been evaluated as an effective compound for the targeted therapy of squamous cell carcinoma. Due to their porous nature and stable structure, metal-organic frameworks (MOFs) are a well-known substance form for various biological applications, such as drug delivery. In this study, we fabricated a novel hybrid, highly porous and low-toxic saponin-loaded nanostructure by modifying graphene oxide (GO)/reduced GO (rGO) with aluminum fumarate (AlFu) as MOF core-shell nanocomposite. The characterization of the nanostructures was investigated by FTIR, TEM, EDX, FESEM, and BET. MTT assay was used to investigate the anticancer activity of these compounds on OSCC and PDL normal dental cells. The effect of the nanocomposites on OSCC was then investigated by studying apoptosis and necrosis using flow cytometry. The GO/rGO was decorated with a saponin-AlFu mixture to further investigate cytotoxicity. The results of the MTT assay showed that PDL cells treated with AlFu-GO-saponin at a concentration of 250 µg/mL had a viability of 74.46 ± 16.02%, while OSCC cells treated with this sample at a similar concentration had a viability of only 38.35 ± 19.9%. The anticancer effect of this nanostructure on OSCC was clearly demonstrated. Moreover, the number of apoptotic cells in the AlFu-GO-saponin and AlFu-rGO-saponin groups was 10.98 ± 2.36%-26.90 ± 3.24% and 15.9 ± 4.08%-29.88 ± 0.41%, respectively, compared with 2.52 ± 0.78%-1.31 ± 0.62% in the untreated group. This significant increase in apoptotic effect observed with AlFu-rGO-saponin was also reflected in the significant anticancer effect of saponin-loaded nanostructures. Therefore, this study suggests that an effective saponin delivery system protocol for the precise design and fabrication of anticancer nanostructures for OSCC therapy should be performed prior to in vivo evaluations.

SELECTION OF CITATIONS
SEARCH DETAIL
...